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Abstract: Some modifications in elimination weighing method for radioactive source

allowed correcting weighing results without non-linearity problems assign a

uncertainty contribution for the correction of the same order of the mass of drop

uncertainty and check weighing variability in series source preparation. This analysis
has focused in knowing the achievable weighing accuracy and the uncertainty
estimated by Monte Carlo method for a mass of a 20 mg drop was at maximum of

0.06%.
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1. INTRODUCTION

In radionuclide metrology, radioactive sources
preparation encompasses a weighing procedure
able to achieve standard uncertainties below than
20 pg in the range from 10 mg to 100 mg [1].
The Elimination Weighing method meets this
requirement for micro-drops deposition or
dilution of a master solution using a plastic
pycnometer [2]. In this weighing procedure three
weighing steps are performed per source: the
pycnometer is weighed before and after
dispensing the drop of solution, and by knowing
the mass of the drop (by the weighing
difference), one or several standard weights [3]
are added on the balance load receptor and the
third weighing reading is recorded. The mass of
the drop is obtained from the difference between
first and third weighing thus avoiding non-
linearity errors problems. To avoid correlations in
series sources preparation this method suggests to
weigh the pycnometer before each drop
deposition The absence of systematic errors
between the weighing (evaporation, drying of a

drop in capillary stem, zero drift of the balance)
is checked by the criterion that the difference
between third and second weighing readings
should be in agreement with conventional mass
[4] of standards within twice the uncertainty.

In despite of, by elimination weighing it is not
possible to correct systematic errors without take
into account non-linearity errors on the third and
second weighing and its uncertainty contribution.
Furthermore, this method does not provide any
estimate to check variability in series sources
preparation. Thus, in order to improve the
reliability of the elimination method, this work
proposes a modification that allows: correcting
weighing results without non-linearity problems,
assign a uncertainty contribution for correction of
the same order of the mass of drop uncertainty
and check weighing variability in series source
preparation.

The modification consists in performer the
second weighing in elimination method also with
the same or different standard weights used in
third weighing. In the original elimination
method [5] the second weighing was performed
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by this way and it relies on the previously
planned procedure. For an experienced staff the
diameter of the stem tip of a laboratory-made
pycnometer [6] is adjusted such the mass per
drop is previously known with 2 mg of difference
from the true value. This approximation could be
improved by performing the weighing of some
drops before to execute the weighing procedure.
Thus, the suitable amount of mass standards can
be available close to the balance at the moment of
the weighing. By this way, the standard weights
and the pycnometer are placed together on the
balance receptor at the second weighing and its
mass is adjusted until the difference to first
reading is less than 3 mg (for 0.001 mg resolution
balance) limiting non-linearity error [7].

By this proposal, one can obtain two weighing
differences to form a restrained underdetermined
equation system which can be solved including a
restrain, the mass of standard weights. This
solution provides a mass value of the standard
weights in addition to the mass of the drop. The
mass of the standards could be used to estimate

errors difference in weighing on some
assumptions about linear error structure
(constant, increasing and different in one

weighing from the two equal others). The values
for mass standards obtained from weighing of a
series source preparing could be used to set a
long-run standard deviation [8] and to check
weighing variability in source preparation serie,
so providing information to variability studies

[9].

In this study the measurement models for the
mass measurement are showed and an estimate of
the correction to linear errors in weighing is
presented. A routinely assumed error structure on
weighing is defined to evaluate the applicability
of correction and its uncertainty. The uncertainty
to the correction and mass values corrected are
calculated by Monte Carlo method [10] to a
simulated weighing condition in order to evaluate
the achievable accuracy for this modified method
in order to implement it.
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2. MEASUREMENT MODEL

On the assumption of the balance has been
adjusted before weighing, the difference Aly;
between the first weighing, that includes the
conventional mass of the drop mcy and the i (2™
or 3y  weighing with standard weights of
conventional mass mc,; can be written:

Al = meg —mcy;

Here the difference Aly; includes the balance
readings for 1% weighing R, and the i" R;
sensitivity error AS and the buoyancy correction
[11] which take in account the air density p,, the
conventional air density po (1.2 kg m™), density
of the master solution ps, density of balance
reference standards pgr and the density of
standards weighed together with the solution p;:

Aly; = [(R1 ~Ry) (1 - ﬂ)

+(pa Po) ___](1
—AS)

From the two weighing differences the
equation system in matrix form can be mounted:

mcy
Allz] [0 [mcpll
Al 1 0 -1 MCp;
The solution of this system, on the assumption
of one standard reference with conventional mass
mc,; provides the measurement model for the

conventional mass mcyir (1R means obtained by
one reference), and mcy,:

mcqip = [(Rl —Ry) (1 - ﬂ)

+ (pa — po) ——— (1
Ps
—AS) +mcy,; —(e1



Mmcepy = [(Rs —R;) <1 - M)
Pr

+ (Pa — Po) (p— - p—)] ¢!

3
—AS) +mcy; — (e3 —e3)

When both standards are set as reference just
one solution for the conventional mass of drop
mcyR is possible:

R, +R . —
N

R,
+(ou = po) (S5 2

R
- %)] (1-AS)

(mcmL + mcpz)
2 A

ez+e3>
(%3

In these equations, the terms e, e, and e; are
the sum of readability and repeatability errors
(zero mean with uncertainty) and it is not
considered non-linearity error (avoided by
method) and evaporation error (because it is
corrected by this approach). If one performs
weighing with two references the three equations
can be used. However if the second weighing is
carried out with the same standard of the first,
only the two first equations should be used.

A conversion factor F should be multiplied to
conventional mass of the drop to obtain its mass
value. This factor takes in account the
conventional air density po, density of the master
solution ps and conventional standard weight
density p. (8000 kg m™):

(-3

(1-52)

3. ERRORS STRUCTURE

The errors in weighing (8, &, 03) were
considered as additional linear terms in the
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equations of conventional mass values because
for two weighing differences it is not possible to
take any conclude about additional higher order
systematic error as in mass comparisons [12].
The redefined values for mcqir, mcy, and mcgr
are:

mcgip = Mcqip + (6; — 62)

mez == mcpz + (63 - 82)
8y + O3
MCaap = MCaar + 61 — ( > )

For two references the errors difference (0s-
3;) should be estimated from the difference
between mc,, and the calibration result mcpc,
however if only one reference was used (0;-9,) is
(mcp; - mc,,;) because mc,,; is determined from its
calibration result. It is emphasized that the
underlying hypothesis for this approach is no
standard weights mass drift. This way, the
estimate (83-0,)* can be written by:

(63 — 82)" = mcyy — Mepye (2 references)

(63 — 82)" = mcyy — mcpy (1 reference)

Five assumptions about the difference of the
systematic errors in weighing were studied:

a) Constant (8; = 8, = 83), in this case the
value (0;-0,) = 0 and (8,-9;) = 0, so no correction
should be applied to mcg g or mcgr. This case
could occur in practice for zeroing balance before
each weighing and evaporation and balance drift
are constant but not necessarily negligible.

b) Linear increasing (8, = 8;+ k and 8; = 6, +
k), thus (35-9,) = k and (8;-6,) = -k. Here (85-8,)*
should be add with changed signal to mcg g and
to mcgpr added as 1.5(83-6)*. The linear
increasing  shows commonly for linear
evaporation and/or balance drift when balance is
left to drift.

C) (81 = 33 # &) implies (3;-82) = (8:-6,), by
this way the estimate -(0;-0,,)* should be
summed to mcgr and -0.5(3;-8,)* to mcgr.
When the balance is zeroing before weighing,
this case will most likely occur in drying of a
drop in capillary stem or improper handling of



standard weights or pycnometer in put them on
the balance receptor.

d) (8, = 8, # &), in this case (8;-6,) = 0 and
the estimated value for (0;-0,)* shows a value
which should not correct mcg;r. This case should
be true for improper handling of weights or
pycnometer in the third weighing.

e) (86, = 8;# 6), here (85-6,) = 0 implying that
no correction should be applied when it should
be. This case is the most likely to occur if the
care previously to weighing as suggested by
Louren¢o and Bobin was not taken.

From these assumptions, some conclusions
can be taken about the applicability of the
estimate (83-8,)* and its uncertainty u(0s-6,)*:

1. (83-62)* < U(83-62)*3 Cases a (61:62:83:0),
b (8;=0 and k= 0) and ¢ ((8;-6,) = (8;-6,) =0) are
the fundamental hypothesis to a carefully
weighing practice, for a trained staff, so (8;-0,)*
< u(d3-0,)* accomplishes it and no correction
should be applied but the uncertainty should be
applied. If there some evidence that had occurred
case e, uncertainty should be taken in the same
way.

2. (83-8,)* > u(d;-6,)*: Case b can occur even
for a carefully weighing so (83;-0,)* and the
uncertainty should be applied to the mass of the
drop. Case ¢ and d relies on the technician
judgment. For case C applies the correction and
uncertainty, however for case d no correction is
applied but the uncertainty will be.

Due to errors structure, (83-0,)* is correlated with
mcgig and mcgpr thus, in according to the
multiplicative term for (8;-0,)* to correct mass,

the correlation effect could be higher or lower.
4. UNCERTAINTY EVALUATION

In order to evaluate if the uncertainty of mass
achievable by this method complies with
weighing requirements, the uncertainty for
estimate (83-0,)*, mass corrected mgr , mass
corrected mgr and conventional mass mc,, were
calculated to a 20 mg weight for a simulated
weighing condition close to the real. The
uncertainty was calculated by Monte Carlo
method to 1x10° trials.

The environmental conditions taken in these
calculations are: temperature variation within
21.5 °C £ T £22.5 °C, pressure variation is 995
hPa < p < 1005 hPa, relative humidity variation
within 40% < h < 60%. By these values, the air
density value is (Euramet, 2015) 1,181 (12) kg
m . The assumed density of master solution is
1000 (3) kg m >, the density of balance reference
weights is 8000 (200) kg m™ and the density of
standard weights 8000 (15) kg m . The balance
was adjusted before the weighing and loads are
centred carefully.

The Table 1 shows the uncertainty
components,  probability  distribution  and
parameters to be used in Monte Carlo simulation
for the uncertainty of (8;-8,)* and mass corrected
mdg, mcy, and mdag.

Table 1: Uncertainty components for mass.

Uncertainty component Distribution Unit
Parametersa a
Readability (zero) R(-a,a) ng a=1
Readability (load) R(-a,a) ug a=1
Repeatability N(,0%) ug p=0

c=4
Setésitivity tolerance R(-a,a) a= 1.5 x
10°
Ter7nperature sensitivity R(-a,a) a= 5.8 x
107
Air density N(u,csz) kg m” u=
1.181

o=
0.012
Solution density N(u,csz) kg m” u=
1000

c=3
Balance standard density R(-a,a) kgm®  a=200
Standard weights 1 density N(u,csz) kg m” u=
8000

c=15
Mass instability of weight 1~ R(-a,a) ug a=6
11\/([)§ss weights 1 20 mg E, N(,0%) pg  pu=20 x

c=15

Standard weights 2 density N(p,cz) kg m p=
8000

o=15
Mass instability of weight 2 R(-a,a) ng a=06
11\/([)%ss weights 2 20 mg E, N(p,cz) pg  p= 20 x

c=15

Additional parameters Value Unit
R1=R2=R3 2000 mg
p2=P3 1.095 kg m’



Po 1.2
0c 8000

kg m™
kg m™

Table 2 shows the uncertainty for (83-9,)* and
of the mass corrected md;g, mcy,, and mdyg.
Additionally, the non-corrected mass uncertainty,
relative standard uncertainties and errors are
presented.

Table 2: Errors and uncertainties (1g).

Error (63-62)* mle mcpo deR
values u u u(%) u u(%) u
u(%)

8120

5,=0 6.1 10.8 0.05 6.5 0.03 &1 0.04
83:0

61=10

8, =20 6.1 10.8 0.05 6.5 0.03 11.6 0.06
63=

61=10

8, =20 6.1 65 003 65 0.03 63 0.03
5:=10

No Error ~ ---- 65 003 65 0.03 54 0.03

By Table 2, the relative uncertainty to 20 mg
is always lower than the limit for relative
standard uncertainty, i.e., 0.1%. The higher than
6.5 ug uncertainty of md;r and md,z for cases
with error zero means the correlation effect

which arises from the sum of (85-8,)* to the mass.

As previously, the higher uncertainty in error
linearly increasing means the correlation effect
from the added corrections (83-0,)* for md;gx and
1.5(85-8,)* for mdyg. Otherwise, for errors just in
the second weighing the correlation in md;gr and
mdyr is reduced due to correction, respectively, -
(83-82)* and -0.5(85-0,)*. If it was not regard the
error, the lowest uncertainty for mass is obtained.
Just in this case the usage of two mass standards
would be justified.

5. CONCLUSIONS

The uncertainty calculation achievable for a
modification in elimination weighing method was
performed. This modification, in contrast to the
standard elimination weighing, allows correcting
the common errors in weighing of radioactive
source and provide information for variability
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studies, thus improving the reliability of
elimination weighing.
By the results, the relative standard

uncertainty complies with the limit for relative
standard uncertainty of the drop mass and the
usage of additional standard weights is not
fundamental.
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