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Abstract: Clamp ammeters based on coils are restricted to the measurement of 

alternating currents, through the associated magnetic field. There are also commercial 

versions able of measuring direct currents, based on Hall effect sensors. This 

manuscript presents improvements of a previously presented prototype of a contactless 

ammeter based on commercial giant magnetoresistance magnetometers, associated 

with neural networks for signal processing, able to measure direct electrical currents 

and to infer the distance between the sensor and the electrical current conductor. 
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1. INTRODUCTION 

There are several types of ammeters applicable 

for measurement of electric currents in 

conductors, depending on their physical principle 

and on the need to interrupt the circuit for the 

current to be measured [1]. The goal of the 

present development is to perform measurements 

of direct currents with high resolution, in relation 

to clamp ammeters based on Hall effect sensors. 

The system, initially presented in [2-4], is able to 

also estimate the distance between the sensor and 

the conductor. The present work enhances the 

previous prototypes, by replacing the permanent 

magnet used to polarize the GMR sensors by a 

solenoid, and by employing artificial neural 

networks to estimate currents and distances.  

Section 2 presents the design of the ammeter and 

its electronic circuit. Section 3 presents the 

measurement and processing of experimental 

data. The inverse problem solution based on 

neural networks is described in Section 4. At last, 

Section 5 presents the conclusions.  

2. GMR BASED AMMETER 

2.1. GMR Sensors  

A GMR sensor is characterized by the large 

variation of its resistance as a function of an 

external magnetic field [5], typically between 10 

and 20%. This project is based on the GMR 

AA005-02, manufactured by NVE Corporation. 

The topology of the sensor is a Wheatstone half-

bridge, having two magnetically shielded GMRs 

and two GMRs that are sensitive to the magnetic 

field, all in the same SOIC integrated circuit.  

Without the presence of an external magnetic 

field the bridge is balanced and the output of the 

bridge is zero. In the presence of an external 

magnetic field, the field-sensitive GMRs change 

their values, unbalancing the bridge and 

generating a differential voltage output.  

The output signal of the bridge is directly 

proportional to the supply voltage/current, with a 

typical sensitivity of 0.45 mV/V/Oe and a linear 

region ranging from 10 Oe to 70 Oe.  
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2.2. Ammeter Requirements 

The goal of the ammeter under development is to 

measure electric currents in the range of -20 A to 

20 A, passing through electrical conductors at 

close distance, from 1 cm up to 4 cm. An electric 

current passing through a wire generates a 

circular magnetic field around it that varies with 

the intensity of the current and with the distance 

from the conductor to the measuring point. By 

applying the Biot-Savart law to a straight 

conductor it is observed that the magnetic field H, 

generated is given by 
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where I is the electric current in amperes, r1 is the 

distance between the conductor and the sensor in 

meters and H is the magnetic field in oersteds (1 

Oe = 1000/4π A/m). Considering the values for 

current and distance above indicated, the 

maximum magnetic field to be measured by the 

GMR sensors is 4 Oe. For comparison purposes, 

the Earth’s magnetic field is about 0.5 Oe. 

2.3. Ammeter Design 

As the GMR sensor behavior around H = 0 Oe is 

highly non-linear, it is necessary to apply a DC 

biasing magnetic field so that the sensors operate 

in their linear region. In the previous versions of 

the ammeter, this biasing field was generated by 

a permanent magnet, but it was quite difficult to 

control precisely its value. The present design 

uses a solenoid with 10 turns and 1.5 A to 

generate a biasing field of 16 Oe, so as to provide 

a dynamic range of ±6 Oe in the linear region 

with high accuracy and stability.  

Also, the use of only one GMR sensor is not 

sufficient, as it is necessary to know the distance 

r1 to estimate the electric current I. Thus, the 

ammeter is based on two GMR sensors separated 

by a fixed distance (D = 3 cm), in addition to the 

solenoid above described that generates the 

biasing magnetic field, as shown in Figure 1. 

 

Figure 1. Schematic diagram of the ammeter. 

By measuring the voltage generated by both 

GMR sensors it is possible to estimate the current 

I and also estimate the distance r1 between the 

sensor GMR1 and the conductor. 

2.4. Electronic Circuit 

The electronic conditioning and reading circuit 

shown in Figure 2 was designed and 

implemented. The electronic circuit has the 

functions of feeding the GMR sensors with a DC 

current of approximately 3 mA (current source 

based on the LM318 operational amplifier), as 

well as reading the differential output voltage of 

the bridge and amplifying it by 50 times 

(instrumentation amplifiers INA129, with gain 

defined by the 1 kΩ resistor).  

The offset voltage level of -5.4 V allows a zero 

output voltage, Vout, to be obtained when H = 

16 Oe (polarization field). Thus, for a current of 

0 A in the wire, there will be an output of 0 V. To 

minimize the effect of external interferences and 

improve the ANN performance, a differential 

reading of the sensors outputs is also made, by 

the third INA129 indicated in Figure 2.  

3. EXPERIMENTAL DATA  

To observe the effect of the hysteresis and any 

other fluctuations, 15 tests with currents varying 

between -3 A and 3 A were performed, in steps 

of 0.2 A. The tests were performed with five 

different distances �� , from 1.0 to 2.1 cm, with 

three repetitions for each distance. 
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The data were acquired using an A/D converter, 

model NI-USB 6229, with 16 bits resolution and 

measurements taken every 2 s with 5 kHz 

acquisition frequency.  

It was observed a variation on the offset of the 

signals, probably caused by external 

interferences. To correct this problem, the linear 

coefficient of the estimated trend lines for each 

test was excluded. The results for two distances 

(1.0 and 2.1 cm) can be seen in figure 3, 

containing the electrical current values and the 

respective output voltages. 

 
Figure 3. Data set for two distances. 

4. INVERSE PROBLEM 

As the objective is the development of an 

ammeter, it is necessary to solve the inverse 

problem, which is, given the output voltages of 

the GMR sensors, measured by the data 

acquisition system, to estimate the electric 

current flowing through the conductors and the 

distance r1. For that, two artificial neural 

networks (ANN) were used. The following 

subsections present the details of each one. 

4.1. Estimation of Electric Current 

A two-layer feed-forward network, with 

sigmoidal transfer function in the hidden layer 

and linear transfer function in the output layer 

was created using Matlab’s Neural Network 

Fitting Tool. The final data set described in 

section 3, plus the differential reading, was 

randomly divided into training, validation and 

testing, respectively 70%, 20% and 10% of the 

data. The network was trained with Levenberg-

Marquardt algorithm. Training process stops 

when generalization stops improving, as 

indicated by an increase in the mean squared 

error (MSE) of the validation samples [6]. The 

tests were performed using 20 neurons in the 

hidden layer. The ANN was trained 50 times, and 

the one with best validation Root Mean Squared 

Error (RMSE) was chosen for testing. 

The regression analysis in figure 4 shows that the 

data estimated by the neural networks are 

strongly correlated with the experimental data 

with R (correlation coefficient) higher than 0.96. 

At last, the test RMSE was calculated. The 

network can predict the electric current value, 

given the GMRs voltage values, with reasonable 

accuracy, with an RMSE of 0.327 A. 

 
Figure 2. Schematic diagram of the electronic conditioning circuit of GMR magnetometers. 



 

 

  

  4 

 
Figure 4. Regression analysis. 

4.2. Estimation of Distance 

A two-layer feed-forward network, with 

sigmoidal transfer function in the hidden layer 

and softmax transfer function in the output layer 

was created using Matlab’s Neural Network 

Pattern Recognition and Classification Tool. The 

input variables are the same described in section 

3, plus the electric current values, in a total of 3 

inputs. However, as the distance can’t be 

estimated when I = 0, these values were excluded 

from the final data set. After that, the new data 

set was randomly divided into training, validation 

and testing, respectively 70%, 20% and 10% of 

the data. The network was trained with scaled 

conjugate gradient algorithm. Training process 

automatically stops when generalization stops 

improving [6]. The tests were performed using 20 

neurons in the hidden layer. The ANNs were 

trained 10 times, and the one with best percent of 

correctly classified cases was chosen.  

Even though this ANN originally performs a 

classification between 5 measured distances, it is 

still possible to calculate the error between the 

actual distances and the classified distances. 

When using the actual current values as inputs 

the RMSE for the distance was 0.29 cm and, 

when using the current values estimated by the 

first ANN, this RMSE error increases slightly to 

0.39 cm. 

5. DISCUSSION AND CONCLUSIONS 

The prototype described in this paper, as 

expected, presents a better performance than the 

one in [3], but it is less accurate than the one in 

[4]. This behavior can be explained by the 

inclusion of different distances and the 

interferences observed in the GMR2 signal. 

In future works it is predicted to magnetically 

isolate the sensor, as well as improve the 

conditioning circuit, in order to eliminate the 

offset variations and interferences observed and 

obtain more consistent data, so as to improve the 

obtained uncertainty and RMSE. 
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